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A system, method, and computer program product are pro-
vided for shading primitive fragments. A target buffer may be
recast when shaded samples that are covered by a primitive
fragment are generated at a first shading rate using a first
sampling mode, the shaded samples are stored in the target
buffer that is associated with the first sampling mode and the
first shading rate, a second sampling mode is determined, and
the target buffer is associated with the second sampling mode.
A sampling mode and/or shading rate may be changed for a
primitive. A primitive fragment that is associated with a first
sampling mode and a first shading rate is received and a
second sampling mode is determined for the primitive frag-
ment. Shaded samples corresponding to the primitive frag-
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1
VARIABLE FRAGMENT SHADING WITH
SURFACE RECASTING

FIELD OF THE INVENTION

The present invention relates to shading, and more particu-
larly to shading graphics primitive fragments.

BACKGROUND

Conventional multi-sample shading techniques compute
one color value per fragment (a collection of samples in a
pixel that are covered by one triangle) and the one color value
is replicated to all covered samples within the pixel to produce
animage with anti-aliased edges. Super-sample shading tech-
niques compute a color for every sample in a fragment, pro-
ducing an image with anti-aliased edges as well as anti-
aliased shading in the interior primitive regions. Therefore,
super-sampling typically produces a higher quality anti-
aliased image compared with multi-sampling. In general, the
processing frame rate using super-sampling is proportional to
the number of samples, while the frame rate using multi-
sampling is proportional to the number of pixels.

Thus, there is a need for balancing processing performance
and image quality during shading and/or addressing other
issues associated with the prior art.

SUMMARY

A system, method, and computer program product are
provided for shading primitive fragments. A target buffer may
be recast when shaded samples that are covered by a primitive
fragment are generated at a first shading rate using a first
sampling mode, the shaded samples are stored in the target
buffer that is associated with the first sampling mode and the
first shading rate, a second sampling mode is determined, and
the target buffer is associated with the second sampling mode.
A shading rate and/or sampling mode may be changed for a
primitive. A primitive fragment that is associated with a first
sampling mode and a first shading rate is received and a
second sampling mode is determined for the primitive frag-
ment. Shaded samples corresponding to the primitive frag-
ment are generated, at a second shading rate, using the second
sampling mode and the shaded samples are stored in a target
buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a flowchart of a method for recasting a
target buffer, in accordance with one embodiment;

FIG. 1B illustrates a flowchart of a method for performing
per-primitive fragment dynamic shading, in accordance with
one embodiment;

FIG. 2 illustrates a conceptual diagram of sample locations
within pixels, in accordance with the prior art;

FIG. 3A illustrates another conceptual diagram of a graph-
ics primitive fragment intersecting sample locations in pixels
for two different sampling modes, in accordance with one
embodiment;

FIG. 3B illustrates another flowchart of a method for per-
forming per-primitive fragment dynamic shading, in accor-
dance with one embodiment;

FIG. 4A illustrates a conceptual diagram of two different
sampling modes for shading graphics primitive fragments, in
accordance with one embodiment;
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FIG. 4B illustrates another flowchart of a method for per-
forming per-primitive fragment dynamic shading, in accor-
dance with one embodiment;

FIG. 5 illustrates a parallel processing unit (PPU), accord-
ing to one embodiment;

FIG. 6 illustrates the streaming multi-processor of FIG. 5,
according to one embodiment; and

FIG. 7 illustrates an exemplary system in which the various
architecture and/or functionality of the various previous
embodiments may be implemented.

DETAILED DESCRIPTION

A sampling mode specifies a number of samples per pixel.
Conventionally, the number of samples per pixel is greater
than or equal to one. A shading rate specifies the number of
samples that are shaded for each pixel that is fully covered by
a primitive fragment. The shading rate may be used to specify
whether shading is performed using a super-sample tech-
nique or a multi-sample technique. For example, a shading
rate of one indicates that shading is performed using a multi-
sample technique because a single shaded sample value is
computed and used for all of the samples of a pixel. A shading
rate of N, where N is greater than one indicates that shading is
performed using a super-sample technique because N shaded
sample values are computed for each pixel. In general, a
higher shading rate corresponds to a higher quality image. A
target buffer into which the shaded samples are stored is
associated with a sampling mode and a shading rate. Conven-
tionally, primitives are processed according to a sampling
mode and a shading rate and the same sampling mode and
shading rate are associated with the target buffer. The sam-
pling mode and shading rate may determine how data stored
in the target buffer is interpreted and/or the resolution of the
target buffer.

Based on application requirements, primitive fragments
can be generated from a plurality of sampling modes and
shading rates. For example, one fragment may be generated
using a one sampling mode, while a second fragment from the
same primitive may be generated at a second shading rate.
The sampling mode and/or the shading rate may be changed
for the first and/or second primitive. Shaded samples from
both fragments are then stored in a target buffer. Based on the
chosen sampling mode, the graphics processor may be recon-
figured for efficient utilization of internal datapaths, achieved
by recasting the target buffer to a new shading rate. The
shading rate is variable per pixel or per group of two or more
pixels, and the rate may even be less than one, so that a single
shaded sample value is computed for more than one pixel, as
described further herein. In other words, a sampling rate may
effectively be less than once per pixel.

FIG. 1A illustrates a flowchart of a method 100 for recast-
ing a target buffer, in accordance with one embodiment. At
operation 110, shaded samples that are covered by a primitive
fragment are generated at a first shading rate using a first
sampling mode. At operation 115, the shaded samples are
stored in a target buffer that is associated with the first sam-
pling mode and the first shading rate. At operation 120, a
second sampling mode is determined. At operation 125, the
target buffer is associated with the second sampling mode. At
operation 130, the target buffer is accessed according to the
second sampling mode.

The shading rate and/or sampling mode may be determined
or changed for each graphics primitive while the graphics
primitive is being rendered to improve performance. For
example, shading may be performed at an decreased shading
rate when a graphics primitive associated with a super-sample
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(or anti-aliased) sampling mode is processed using an aliased
sampling mode. In the context of the following description,
the shading rate is a number of samples that are shaded per
pixel, so that an increased shading rate corresponds to an
increase in per-pixel shader program execution. In particular,
the shading rate can be decreased for graphics primitives that
do not cover all of the pixels in a pixel group when a process-
ing core is configured to process the pixels in the pixel group
in parallel, even processing a pixel in the pixel group that is
not covered by a graphics primitive. When a super-sample
sampling mode is used, a color value is computed for each
sample location in a pixel and a high-quality anti-aliased
image may be produced. Therefore, the highest shading rate
when a super-sample sampling mode is used is N shader
program executions to compute N shaded samples for a fully
covered pixel group, assuming that 4 pixels are in a pixel
group and each pixel includes N sample locations.

In contrast, when a multi-sample sampling mode is used, a
single color value is computed for one sample location in a
pixel (typically the pixel center) and the single color value is
used (i.e., replicated) for all of the sample locations in the
pixel. While a multi-sample sampling mode may also be used
to produce an anti-aliased image, the shading quality may be
lower in terms of color frequency compared with an image
produced using a super-sample sampling mode. The highest
shading rate when a multi-sample sampling mode is used is 1
shader program execution for a fully covered pixel group,
assuming that 4 pixels are in a pixel group and that one shaded
sample is computed for each pixel.

When a multi-sample sampling mode is used, shading may
also be performed at a decreased shading rate when a graphics
primitive associated with a first multi-sample sampling mode
is processed using a second multi-sample sampling mode that
has more sample locations for each pixel compared with the
first multi-sample sampling mode. For example, a graphics
primitive associated with a 2 sample-per-pixel multi-sample
sampling mode is processed using a 8 sample-per-pixel multi-
sample sampling mode, so that each 8 shaded samples that are
generated correspond to 4 pixels of a 2 sample-per-pixel
target surface instead of a single pixel. Therefore, the shading
rate decreases by 4x compared when rendering to the 2
sample-per-pixel target surface using the 8 sample-per-pixel
sampling mode. Specifically, the 8 shaded samples corre-
spond to four pixels each having 2 samples instead of 1 pixel
having 8 samples. The shading rate is reduced from one to 1/4
shaded sample per pixel.

FIG. 1B illustrates a flowchart of a method 150 for shading
a graphics primitive fragment, in accordance with one
embodiment. At operation 155, a primitive fragment that is
associated with a first sampling mode and a first shading rate
is received. At operation 160, a second sampling mode is
determined for the primitive fragment. At operation 165,
shaded samples corresponding to the primitive fragment are
generated, at a second shading rate, using the second sam-
pling mode. At operation 170, the shaded samples are stored
in a target buffer.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing framework may or may not be implemented, per
the desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes and
should not be construed as limiting in any manner. Any of the
following features may be optionally incorporated with or
without the exclusion of other features described,

FIG. 2 illustrates a conceptual diagram 200 of sample
locations within pixels 210, 211, 212, and 213, in accordance
with the prior art. When multi-sampling is used with 4
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samples for each pixel, a single color value is computed
corresponding to a pixel center (e.g., pixel center 215) and
four separate color values corresponding to locations A, B, C,
and D are stored in the color buffer for each pixel. When
super-sampling is used with 4 samples for each pixel, 4 color
values are computed corresponding to each of the sample
locations A, B, C, and D and the four color values are stored
in the color buffer for each pixel. As shown in FIG. 2, the
sample locations may be jittered (i.e., offset or distributed)
within each pixel to improve the image quality. In one
embodiment, a sample location may be positioned at the
center of each pixel.

A parallel processing unit may be configured to process a
group of pixels in parallel to generate the shaded color values
forthe samples (i.e., shaded samples). Processing a 2x2 group
of'pixels enables the processing unit to compute texture coor-
dinate derivative values (e.g., du/dx, du/dy, dv/dx, and dv/dy)
that can be used to compute a texture level-of-detail for the
four pixels within the 2x2 pixel group. However, the parallel
processing unit is also configured to perform the shading
operations for the pixels in the 2x2 pixel group in a SIMD
(Single-Instruction, Multiple-Data) manner.

A thread (i.e., a thread of execution) is an instantiation of a
set of instructions, such as shader program instructions. A set
of'threads is executed in parallel to process a pixel group. The
parallel processing unit allocates a thread to each pixel in the
pixel group and each thread produces a different shaded
sample each time the set of threads execute the shader pro-
gram instructions for the pixel. When multi-sampling is used,
each thread in the set of threads executes the shader program
instructions once to produce the single color value for a
respective pixel in the pixel group. The shading rate is one
shaded sample (or one thread shader program execution) per
pixel (regardless of the number of samples that are stored for
a multi-sample mode).

When super-sampling is used, each thread executes the
shader program instructions once to produce a color value for
one sample of a respective pixel in the pixel group. When the
pixels include four samples, each thread will execute the
shader program instructions four times to produce the four
shaded samples of a respective pixel. Four threads are con-
sumed per pixel.

A drawback of the SIMD processing technique used by the
parallel processing unit is that the four threads execute the
shader program instructions, even when one the sample is not
covered by a primitive. For example, as shown in FIG. 2, a
primitive 205 covers the four sample locations A, B, C, and D
of'the pixel 210 and does not cover any sample locations in the
other pixels of the 2x2 pixels group, namely pixels 211, 212,
and 213. Each of the four threads “executes” the shader pro-
gram instructions to generate a shaded sample for location A
in the pixels 210,211, 212, and 213. Because location A is not
covered by the primitive 205 for pixels 211, 212, and 213,
three of the four threads are actually idle (or disabled) and do
not necessarily execute the shader program instructions. The
three idle threads are not available to perform other process-
ing while a shaded sample is produced for one or more of the
pixels in the 2x2 pixel group. Therefore, when the thread
allocated to produce shaded samples forlocations B, C,and D
in the pixel 210 executes the shader program instructions a
second, third, and fourth time, the threads allocated to the
pixels 211, 212, and 213 are also idle. The number of threads
that are consumed (computing a shaded sample or idle) for the
primitive fragment 205 is 16 to shade the pixel 210. Clearly,
some processing efficiency is lost when shading a primitive
that does not cover at least one sample in each pixel of a pixel

group.
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FIG. 3A illustrates a conceptual diagram of a graphics
primitive fragment 305 intersecting sample locations in pix-
els for two different sampling modes, in accordance with one
embodiment. The graphics primitive fragment 305 is the por-
tion of the primitive 205 that intersects the pixel group. Pixels
310, 311, 312, and 313 correspond to pixels 210, 211, 212,
and 213 of FIG. 2. For the pixel group 300, the sampling mode
associated with the primitive fragment 305 is the super-
sample sampling mode with four sample locations A, B, C,
and D (i.e., 4x super-sampling). Because the primitive frag-
ment 305 only covers a single pixel in the pixel group, the
sampling mode is changed from the 4x super-sample sam-
pling mode for the pixel group 300 to a 1x multi-sample
sampling mode for the pixel group 325, as shown in the
bottom half of FIG. 3A. In one embodiment, the sampling
mode is changed based on the pixel coverage characteristics
of'the primitive fragment 305. The coverage characteristics of
the primitive fragment 305 provide an estimate of color vari-
ability in the group of pixels 300. In general, as the number of
pixels in the pixel group 300 that are covered by a single
fragment increases, the color variability typically decreases.

As previously explained, when a multi-sample sampling
mode is used, a single color value is produced by each thread,
and the single color value may be computed for the pixels
centers. As shown in FIG. 3A, color values are computed for
the pixel centers 320, 321, 322, and 323 corresponding to the
pixels 330, 331, 332, and 333, respectively. Primitive frag-
ment 305 may be rendered to a target buffer having a higher
resolution so that each sample of the pixel group 300 corre-
sponds to a different pixel of the pixel group 325. For
example, a target buffer designated as a 640x480 pixel buffer
configured to store 4x super-sample pixels may be “recast” as
a 1280x960 pixel buffer configured to store 1x multi-sample
pixels during the generation and storing of the shaded
samples for the primitive fragment 305.

The primitive fragment 305 is processed using a 1x multi-
sample sampling mode for the recast target bufter having 4x
the resolution, so that each of the 4 threads generates a shaded
sample when the shader program instructions are executed.
The shader program instructions only need to be executed
once to generate the four shaded samples and none of the
threads are idle. The shaded samples are written to the recast
target buffer so that the four shaded samples are stored for the
pixel 310. The shading rate for the primitive fragment 305 is
decreased by 4x from 4 shaded samples per pixel to 1 shaded
sample per pixel. Correspondingly, the number of threads that
are consumed to compute shaded samples is reduced from 16
threads for processing the pixel group 300 using the 4x super-
sample sampling mode to 4 threads for processing the pixel
group 300 using the 1x multi-sample sampling mode.

In another example in which each pixel includes 8 sample
locations, a primitive fragment covering all samples of a
single pixel may be processed using a ix multi-sample sam-
pling mode for atarget buffer having 8x the resolution, so that
each of the 4 threads generates a shaded sample when the
shader program instructions are executed. The shader pro-
gram instructions only need to be executed twice to generate
the eight shaded samples. The shaded samples may then be
written to a 1x resolution target buffer so that the eight shaded
samples are stored for the covered pixel. The shading rate for
the primitive fragment 305 is decreased by 4x from 32 shaded
samples per pixel to 8 shaded samples per pixel. Correspond-
ingly, the number of thread shader program executions for
processing the primitive fragment 305 for the pixel group
using the 8x super-sample sampling mode is reduced from 32
to 8.
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A high-quality anti-aliased image may be produced by
changing the sampling mode used to generate shaded samples
for primitive fragments from a super-sample to a multi-
sample sampling mode and shading performance may be
improved by the resulting decreased shading rate. However,
the locations of the samples that are generated for the pixel
group 325 are not the same as the sample locations A, B, C,
and D for the pixel 310 because when a multi-sample sam-
pling mode is used instead of a super-sample sampling mode
the color values are computed for the pixel centers 320, 321,
322,and 323. As shown in FIG. 3 A, the corresponding sample
locations A, B, C, and D are offset from the pixel centers 320,
321, 322, and 323 within the pixels 330, 331, 332, and 333,
respectively.

While the offset of the sampling locations does not neces-
sarily compromise the quality of the color values, the offset of
the sampling locations can produce inaccurate texture map
coordinates which may compromise the quality of the image.
A driver kernel may be configured to offset the texture coor-
dinates (u,v) by inserting additional instructions into the
shader program, so that the texture coordinates computed for
the pixels 330, 331, 332, and 333 equal the texture coordi-
nates that would be computed for the sample locations A, B,
C, and D of the pixel 312. In one embodiment, the driver
kernel may also be configured to insert additional instructions
into the shader program so that computed texture coordinate
derivatives are scaled when the rendering resolution is
changed. For example, three of the shaded samples may be
used to construct a derivative plane equation and each thread
may execute an additional shader program instruction to
obtain the value of an attribute corresponding to the sample
location A, B, C, or D. For example, the additional shader
program instruction may be configured to interpolate a plane
equation to compute the value of the attribute. In one embodi-
ment, one or more additional shader program instructions are
configured to offset texture coordinates and derivative com-
putations when a target buffer is recast.

For some primitive fragments, the coverage of the pixel
group 325 may not equal the pixel coverage for the pixel
group 300 when the sample locations A, B, C, and D for the
pixels in the pixel group 300 are effectively mapped to the
pixel center positions 320, 321, 322, and 323 in the pixel
group 325. For example, a sample location in the pixel group
300 may be covered by a primitive fragment and the corre-
sponding pixel center in the pixel group 325 may not be
covered by the primitive fragment, so that a shaded sample
would not be generated for the sample location. Similarly, a
narrow primitive fragment may cover a pixel center in the
pixel group 325 and not cover a sample location in the pixel
group 300, so that an unneeded shaded sample is generated
for the sample location. In one embodiment, the driver kernel
may be configured to insert additional instructions into the
shader program to jitter the sample patterns used for the
multi-sample sampling modes so that the sample locations
are used instead of the pixel centers (i.e., the sample locations
A, B, C, and D in the pixel group 325 are used instead of the
pixel centers 320, 321, 322, and 323). In another embodi-
ment, changing the sampling mode from a super-sample sam-
pling mode to a multi-sample sampling mode may be limited
to full screen graphics primitives.

FIG. 3B illustrates another flowchart of a method 350 for
performing per-primitive fragment dynamic shading, in
accordance with one embodiment. At operation 355, a primi-
tive fragment that is associated with a super-sample sampling
mode and a first shading rate is received by a processing core
that is configured to execute shader program instructions. The
first shading rate is dependent on the number of samples per
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pixel, such that the first shading rate decreases as the number
of samples per pixel decreases. Similarly, the number of
threads consumed to compute the shaded samples decreases
as the shading rate decreases.

At operation 360 the processing core determines if all of
the pixels in a pixel group, such as the pixel group 300, are
covered by a primitive fragment. When all of the pixels are not
covered only a portion of the pixels in the pixel group that is
processed in parallel by a set of threads is covered by the
primitive fragment. If all of the pixels are covered, then at
operation 365 one shaded sample is generated by each thread
allocated to the pixel group. In the context of the present
description, the processing core may allocate one thread to
each pixel of a pixel group and shader program instructions
may cause the threads to determine if all of the pixels are
covered by the primitive fragment. In one embodiment, a
pixel group may include two or more adjacent pixels (e.g.,
2x1, 1x2, 2x2, etc.).

At operation 365, the super-sample (SS) sampling mode is
used to generate the shaded samples. At operation 370, the
processing core determines if another sample location should
be processed for at least one of the pixels in the pixel group,
and, if so, the shader program is executed by one or more
threads to generate shaded sample(s) for the other sample
location. Otherwise, shaded samples have been generated for
the covered sample locations in the pixel group, and at opera-
tion 385 the threads store the shaded samples in a target
buffer. The target buffer may be a color buffer that is stored in
a memory and configured to store one or more shaded
samples for each pixel.

If, at operation 360, the processing core determines that all
of the pixels in the pixel group are not covered by the primi-
tive fragment, then, at operation 375, one shaded sample is
generated by each thread allocated to the pixel group. At
operation 365, the super-sample sampling mode that is asso-
ciated with the primitive fragment is not used to generate the
shaded samples. Instead, a ix multi-sample sampling mode is
used to generate the shaded samples at operation 375.

When each pixel includes four samples and only a single
pixel is covered by the primitive fragment, the ix multi-
sample sampling mode corresponds to 4 thread shader pro-
gram executions per pixel or a shading rate of 4 shaded
samples per pixel, so that all of the shaded samples may be
generated when the four threads execute the shader program
once. In contrast, the shading rate corresponding to the super-
sample sampling mode is 16 shaded samples per pixel or 16
thread shader program executions per pixel. When each pixel
includes four samples and only two pixels are covered by the
primitive fragment, the 1x multi-sample sampling mode cor-
responds to a shading rate of four shaded samples per pixel (or
4 thread shader program executions per pixel), so that all of
the shaded samples may be generated when the four threads
execute the shader program twice. In contrast, the shading
rate corresponding to the super-sample sampling mode is 16
shaded samples per two pixels (or 16 thread shader program
executions per two pixels).

Atoperation 380, the processing core determines if another
pixel should be processed for at least one of the pixels in the
pixel group, and, if so, the shader program is executed by one
or more threads to generate shaded sample(s) for the other
pixel. Otherwise, shaded samples have been generated for the
covered sample locations in the pixel group, and, at operation
385, the threads store the shaded samples in a target buffer.
The target buffer may be a color buffer that is stored in a
memory and configured to store one or more shaded samples
for each pixel.
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As previously described the sampling mode may be
changed from a super-sample sampling mode to a multi-
sample sampling mode to decrease the shading rate. When a
multi-sample sampling mode is specified for shading one or
more primitives, a resolution of the multi-sample mode may
be changed to decrease the shading rate. The shading rate may
be decreased so that each thread shader program execution
computes shaded samples for multiple pixels by reducing the
resolution of the multi-sample mode. The color value com-
puted for a pixel center is used to produce shaded samples for
two or more pixels instead of being used to produce shaded
samples for only one pixel.

FIG. 4A illustrates a conceptual diagram of two different
sampling modes for shading graphics primitive fragments, in
accordance with one embodiment. A 2x multi-sample sam-
pling mode is specified for the 8x4 pixel target buffer 410,
where each “x” corresponds to a sample location. The target
buffer 410 may be recast as an 8x multi-sample target buffer
resulting in the recast target buffer 400 that stores shaded
samples for a 4x2 pixel region. When the target buffer 410 is
recast, the total number of samples is unchanged. The shading
rate for the target buffer 410 is one, e.g., 4 shaded samples for
4 pixels. Four thread shader program executions are needed to
compute the 4 shaded samples. The shading rate for the target
buffer 400 is also one. However, when the target buffer 410 is
recast as target buffer 400 and interpreted as a 2x multi-
sample target buffer instead of an 8x multi-sample target
buffer, the shading rate is 1/4, e.g., 4 shaded samples for 16
pixels. Four thread shader program executions compute 4
shaded samples for the recast target buffer 400 that corre-
spond to 16 pixels for the target buffer 410.

A target buffer designated as a 1280x960 pixel buffer con-
figured to store 2x multi-sample pixels may be “recast” as a
640x480 pixel buffer configured to store 8x multi-sample
pixels during the generation and storing of the shaded
samples for one or more primitive fragments. The edge sharp-
ness of full resolution rendering may be preserved for the
recast target bufter while the shading rate is decreased. How-
ever, because a generated color value is replicated to generate
shaded samples for multiple pixels, recasting a multi-sample
buffer to a lower resolution buffer (in terms of pixels) is best
suited for low frequency or constant color textures. Recasting
amulti-sample butfer to a lower resolution bufter may also be
used to render shadowmaps where a shader program is con-
figured to remove coverage based on whether a pixel is lit by
a light source rather than compute a color value directly.

In one embodiment, the sampling mode may be dynami-
cally changed for shading each primitive fragment. In another
embodiment, the sampling mode may be changed to decrease
the shading rate and reduce power consumption of a graphics
processor. When recasting a multi-sample buffer to a lower
resolution buffer is used for final rendering, post-processing
of the higher resolution target buffer may be used to interpo-
late values between groups of constant color pixels to reduce
any “screen door” artifacts resulting from the decreased shad-
ing rate.

FIG. 4B illustrates another flowchart of a method 450 for
performing per-primitive fragment dynamic shading, in
accordance with one embodiment. At operation 455, a primi-
tive fragment that is associated with a first multi-sample sam-
pling mode corresponding to a first shading rate is received by
a processing core that is configured to execute shader pro-
gram instructions. The first shading rate corresponds to one
thread shader program execution per pixel.

At operation 460, the processing core determines if the
shading rate should be decreased. If the shading rate should
not be increased, then, at operation 465, one shaded sample is
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generated by each thread allocated to a pixel in a pixel group
and the first multi-sample sampling mode is used to generate
the shaded samples. At operation 470, each thread replicates
the one shaded sample based on the first multi-sample sam-
pling mode. For example, when the first multi-sample sam-
pling mode is 4x, the one shaded sample is replicated to
produce 4 shaded samples. At operation 485, the threads store
the shaded samples in a target buffer. The target buffer may be
a color buffer that is stored in a memory and configured to
store one or more shaded samples for each pixel.

If, at operation 460, the processing core determines that the
shading rate should be decreased, then, at operation 472, a
second multi-sample sampling mode is determined that cor-
responds to a second shading rate. At operation 475, one
shaded sample is generated by each thread allocated to a pixel
in a pixel group and the second multi-sample sampling mode
is used to generate the shaded samples. At operation 480, each
thread replicates the one shaded sample to generate shaded
samples for multiple pixels based on the second multi-sample
sampling mode. For example, when the first multi-sample
sampling mode is 8x and the second multi-sample sampling
mode is 2x, the shaded sample for one pixel is replicated to
produce 4 shaded samples for 4 different pixels. At operation
485, the threads store the shaded samples in a target buffer.
The target buffer may be a color buffer that is stored in a
memory and configured to store one or more shaded samples
for each pixel.

FIG. 5 illustrates a parallel processing unit (PPU) 500,
according to one embodiment. While a parallel processor is
provided herein as an example of the PPU 500, it should be
strongly noted that such processor is set forth for illustrative
purposes only, and any processor may be employed to supple-
ment and/or substitute for the same. In one embodiment, the
PPU 500 is configured to execute a plurality of threads con-
currently in two or more streaming multi-processors (SMs)
550. A thread (i.e., a thread of execution) is an instantiation of
a set of instructions executing within a particular SM 550.
Each SM 550, described below in more detail in conjunction
with FIG. 6, may include, but is not limited to, one or more
processing cores, one or more load/store units (LSUs), a
level-one (L.1) cache, shared memory, and the like.

In one embodiment, the PPU 500 includes an input/output
(I/O) unit 505 configured to transmit and receive communi-
cations (i.e., commands, data, etc.) from a central processing
unit (CPU) (not shown) over the system bus 502. The I/O unit
505 may implement a Peripheral Component Interconnect
Express (PCle) interface for communications over a PCle
bus. In alternative embodiments, the [/O unit 505 may imple-
ment other types of well-known bus interfaces.

The PPU 500 also includes a host interface unit 510 that
decodes the commands and transmits the commands to the
grid management unit 515 or other units of the PPU 500 (e.g.,
memory interface 580) as the commands may specify. The
host interface unit 510 is configured to route communications
between and among the various logical units of the PPU 500.

In one embodiment, a program encoded as a command
stream is written to a buffer by the CPU. The buffer is a region
in memory, e.g., memory 504 or system memory, that is
accessible (i.e., read/write) by both the CPU and the PPU 500.
The CPU writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 500. The host interface unit 510 provides the grid man-
agement unit (GMU) 515 with pointers to one or more
streams. The GMU 515 selects one or more streams and is
configured to organize the selected streams as a pool of pend-
ing grids. The pool of pending grids may include new grids
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that have not yet been selected for execution and grids that
have been partially executed and have been suspended.

A work distribution unit 520 that is coupled between the
GMU 515 and the SMs 550 manages a pool of active grids,
selecting and dispatching active grids for execution by the
SMs 550. Pending grids are transferred to the active grid pool
by the GMU 515 when a pending grid is eligible to execute,
i.e., has no unresolved data dependencies. An active grid is
transferred to the pending pool when execution of the active
grid is blocked by a dependency. When execution of a grid is
completed, the grid is removed from the active grid pool by
the work distribution unit 520. In addition to receiving grids
from the host interface unit 510 and the work distribution unit
520, the GMU 510 also receives grids that are dynamically
generated by the SMs 550 during execution of a grid. These
dynamically generated grids join the other pending grids in
the pending grid pool.

In one embodiment, the CPU executes a driver kernel that
implements an application programming interface (API) that
enables one or more applications executing on the CPU to
schedule operations for execution on the PPU 500. An appli-
cation may include instructions (i.e., API calls) that cause the
driver kernel to generate one or more grids for execution. In
one embodiment, the PPU 500 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
block (i.e., warp) in a grid is concurrently executed on a
different data set by different threads in the thread block. The
driver kernel defines thread blocks that are comprised of k
related threads, such that threads in the same thread block
may exchange data through shared memory. In one embodi-
ment, a thread block comprises 32 related threads and a grid
is an array of one or more thread blocks that execute the same
stream and the different thread blocks may exchange data
through global memory.

In one embodiment, the PPU 500 comprises X SMs 550
(X). For example, the PPU 500 may include 15 distinct SMs
550. Each SM 550 is multi-threaded and configured to
execute a plurality of threads (e.g., 32 threads) from a par-
ticular thread block concurrently. Each of the SMs 550 is
connected to a level-two (1.2) cache 565 via a crossbar 560 (or
other type of interconnect network). A color blend unit 562 is
configured to perform blend functions, such as the blend
function used to accumulate the modulated sample color val-
ues and combined modulated sample values into the color
buffer that may be stored in the memory 540 and cached in the
L2 cache 565. In one embodiment, the color blend unit 562
may also be configured to modulate the sample color values
for each pixel by setting the alpha value (srcAlpha) to the
number of samples per pixel to generate a modulated sample
color value or setting the alpha value to the per-pixel coverage
to generate a combined modulated sample color value. For
example, in terms of the OpenGL® applications program-
ming interface the blend_func=GIL_ADD,
blend_sre=GL._ALPHA, blend_dst=GI,_ONE. The sample
color value (src) is scaled by the alpha value and summed with
the color value that is stored for the pixel (dst).

The L2 cache 565 is connected to one or more memory
interfaces 580. Memory interfaces 580 implement 16, 32, 64,
128-bit data buses, or the like, for high-speed data transfer. In
one embodiment, the PPU 500 comprises U memory inter-
faces 580(U), where each memory interface 580(U) is con-
nected to a corresponding memory device 504(U). For
example, PPU 500 may be connected to up to 6 memory
devices 504, such as graphics double-data-rate, version 5,
synchronous dynamic random access memory (GDDRS
SDRAM).
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In one embodiment, the PPU 500 implements a multi-level
memory hierarchy. The memory 504 is located off-chip in
SDRAM coupled to the PPU 500. Data from the memory 504
may be fetched and stored in the 1.2 cache 565, which is
located on-chip and is shared between the various SMs 550.
In one embodiment, each of the SMs 550 also implements an
L1 cache. The L1 cache is private memory that is dedicated to
a particular SM 550. Each of the L1 caches is coupled to the
shared L2 cache 565. Data from the .2 cache 565 may be
fetched and stored in each of the L1 caches for processing in
the functional units of the SMs 550.

In one embodiment, the PHI 500 comprises a graphics
processing unit (GPU). The PPU 500 is configured to receive
commands that specify shader programs for processing
graphics data. Graphics data may be defined as a set of primi-
tives such as points, lines, triangles, quads, triangle strips, and
the like. Typically, a primitive includes data that specifies a
number of vertices for the primitive (e.g., in a model-space
coordinate system as well as attributes associated with each
vertex of the primitive. The PPU 500 can be configured to
process the graphics primitives to generate a frame buffer
(i.e., pixel data for each of the pixels of the display). The
driver kernel implements a graphics processing pipeline, such
as the graphics processing pipeline defined by the OpenGL
APL

An application writes model data for a scene (i.e., a col-
lection of vertices and attributes) to memory. The model data
defines each of the objects that may be visible on a display.
The application then makes an API call to the driver kernel
that requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the buffer to perform one or more operations to process the
model data. The commands may encode different shader
programs including one or more of a vertex shader, hull
shader, geometry shader, pixel shader, etc.

For example, the GMU 515 may configure one or more
SMs 550 to execute a vertex shader program that processes a
number of vertices defined by the model data. In one embodi-
ment, the GMU 515 may configure different SMs 550 to
execute different shader programs concurrently. For example,
a first subset of SMs 550 may be configured to execute a
vertex shader program while a second subset of SMs 550 may
be configured to execute a pixel shader program. The first
subset of SMs 550 processes vertex data to produce processed
vertex data and writes the processed vertex data to the 1.2
cache 565 and/or the memory 504. After the processed vertex
data is rasterized (i.e., transformed from three-dimensional
data into two-dimensional data in screen space) to produce
fragment data, the second subset of SMs 550 executes a pixel
shader to produce processed fragment data, which is then
blended with other processed fragment data and written to the
frame buffer in memory 504. The vertex shader program and
pixel shader program may execute concurrently, processing
different data from the same scene in a pipelined fashion until
all of the model data for the scene has been rendered to the
frame buffer. Then, the contents of the frame buffer are trans-
mitted to a display controller for display on a display device.

A pixel shader program may be configured to generate
images according to the techniques described in conjunction
with FIGS. 1, 3A, 3B, 4A, and 4B when executed by one or
more SMs 550. The driver kernel may be configured to insert
additional instructions into a shader program, as previously
described. In one embodiment, the processing cores are con-
figured to dynamically determine a second sampling mode
and corresponding shading rate based on a particular primi-
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tive fragment, power consumption mode, and/or shading per-
formance setting. A multi-sample target buffer may be stored
in the memory 504.

The PPU 500 may be included in a desktop computer a
laptop computer, a tablet computer, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant (PDA),
a digital camera, a hand-held electronic device, and the like.
In one embodiment, the PPU 500 is embodied on a single
semiconductor substrate. In another embodiment, the PPU
500 is included in a system-on-a-chip (SoC) along with one or
more other logic units such as a reduced instruction set com-
puter (RISC) CPU, a memory management unit (MMU), a
digital-to-analog converter (DAC), and the like.

In one embodiment, the PHI 500 may be included on a
graphics card that includes one or more memory devices 504
such as GDDRS SDRAM. The graphics card may be config-
ured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 500 may be an integrated graphics processing unit
(iGPU) included in the chipset (i.e., Northbridge) of the
motherboard.

FIG. 6 illustrates the streaming multi-processor 550 of
FIG. 5, according to one embodiment. As shown in FIG. 6, the
SM 550 includes an instruction cache 605, one or more sched-
uler units 610, a register file 620, one or more processing
cores 650, one or more double precision units (DPUs) 651,
one or more special function units (SFUs) 652, one or more
load/store units (LSUs) 653, an interconnect network 680, a
shared memory/L.1 cache 670, and one or more texture units
690.

As described above, the work distribution unit 520 dis-
patches active grids for execution on one or more SMs 550 of
the PPU 500. The scheduler unit 610 receives the grids from
the work distribution unit 520 and manages instruction sched-
uling for one or more thread blocks of each active grid. The
scheduler unit 610 schedules threads for execution in groups
of parallel threads, where each group is called a warp. In one
embodiment, each warp includes 32 threads. The scheduler
unit 610 may manage a plurality of different thread blocks,
allocating the thread blocks to warps for execution and then
scheduling instructions from the plurality of different warps
on the various functional units (i.e., cores 650, DPUs 651,
SFUs 652, and L.SUs 653) during each clock cycle.

In one embodiment, each scheduler unit 610 includes one
ormore instruction dispatchunits 615. Each dispatch unit 615
is configured to transmit instructions to one or more of the
functional units. In the embodiment shown in FIG. 6, the
scheduler unit 610 includes two dispatch units 615 that enable
two different instructions from the same warp to be dis-
patched during each clock cycle. In alternative embodiments,
each scheduler unit 610 may include a single dispatch unit
615 or additional dispatch units 615.

Each SM 650 includes a register file 620 that provides a set
of registers for the functional units of the SM 650. In one
embodiment, the register file 620 is divided between each of
the functional units such that each functional unit is allocated
a dedicated portion of the register file 620. In another embodi-
ment, the register file 620 is divided between the different
warps being executed by the SM 550. The register file 620
provides temporary storage for operands connected to the
data paths of the functional units.

Each SM 550 comprises L. processing cores 650. In one
embodiment, the SM 550 includes a large number (e.g., 192,
etc.) of distinct processing cores 650. Each core 650 is a
fully-pipelined, single-precision processing unit that includes
afloating point arithmetic logic unit and an integer arithmetic
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logic unit. In one embodiment, the floating point arithmetic
logic units implement the IEEE 754-2008 standard for float-
ing point arithmetic. Each SM 550 also comprises M DPUs
651 that implement double-precision floating point arith-
metic, N SFUs 652 that perform special functions (e.g., copy
rectangle, pixel blending operations, and the like), and P
LSUs 653 that implement load and store operations between
the shared memory/L1 cache 670 and the register file 620. In
one embodiment, the SM 550 includes 64 DPUs 651, 32 SRN
652, and 32 LSUs 653.

Each SM 550 includes an interconnect network 680 that
connects each of the functional units to the register file 620
and the shared memory/L.1 cache 670. In one embodiment,
the interconnect network 680 is a crossbar that can be con-
figured to connect any of the functional units to any of the
registers in the register file 620 or the memory locations in
shared memory/L.1 cache 670.

In one embodiment, the SM 550 is implemented within a
GPU. In such an embodiment, the SM 550 comprises J texture
units 690. The texture units 690 are configured to load texture
maps (i.e., a 2D array of texels) from the memory 504 and
sample the texture maps to produce sampled texture values
for use in shader programs. The texture units 690 implement
texture operations such as anti-aliasing operations using mip-
maps (i.e., texture maps of varying levels of detail). In one
embodiment, the SM 550 includes 16 texture units 690.

The PPU 500 described above may be configured to per-
form highly parallel computations much faster than conven-
tional CPUs. Parallel computing has advantages in graphics
processing, data compression, biometrics, stream processing
algorithms, and the like.

FIG. 7 illustrates an exemplary system 700 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a sys-
tem 700 is provided including at least one central processor
701 that is connected to a communication bus 702. The com-
munication bus 702 may be implemented using any suitable
protocol, such as PCI (Peripheral Component Interconnect),
PCI-Express, AGP (Accelerated Graphics Port), HyperTrans-
port, or any other bus or point-to-point communication pro-
tocol(s). The system 700 also includes a main memory 704.
Control logic (software) and data are stored in the main
memory 704 which may take the form of random access
memory (RAM).

The system 700 also includes input devices 712, a graphics
processor 706, and a display 708, i.e. a conventional CRT
(cathode ray tube), LCD (liquid crystal display), LED (light
emitting diode), plasma display or the like. User input may be
received from the input devices 712, e.g., keyboard, mouse,
touchpad, microphone, and the like. In one embodiment, the
graphics processor 706 may include a plurality of shader
modules, a rasterization module, etc. Each of the foregoing
modules may even be situated on a single semiconductor
platform to form a graphics processing unit (GPU).

In the present description, a single semiconductor platform
may refer to a sole unitary semiconductor-based integrated
circuit or chip. It should be noted that the term single semi-
conductor platform may also refer to multi-chip modules with
increased connectivity which simulate on-chip operation, and
make substantial improvements over utilizing a conventional
central processing unit (CPU) and bus implementation. Of
course, the various modules may also be situated separately
or in various combinations of semiconductor platforms per
the desires of the user.

The system 700 may also include a secondary storage 710.
The secondary storage 710 includes, for example, a hard disk
drive and/or a removable storage drive, representing a floppy
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disk drive, a magnetic tape drive, a compact disk drive, digital
versatile disk (DVD) drive, recording device, universal serial
bus (USB) flash memory. The removable storage drive reads
from and/or writes to a removable storage unit in a well-
known manner.

Computer programs, or computer control logic algorithms,
may be stored in the main memory 704 and/or the secondary
storage 710. Such computer programs, when executed,
enable the system 700 to perform various functions. For
example, a compiler program that is configured to examiner a
shader program and enable or disable attribute buffer com-
bining may be stored in the main memory 704. The compiler
program may be executed by the central processor 701 or the
graphics processor 706. The main memory 704, the storage
710, and/or any other storage are possible examples of com-
puter-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 701, the graphics processor
706, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central processor
701 and the graphics processor 706, a chipset (i.e., a group of
integrated circuits designed to work and sold as a unit for
performing related functions, etc.), and/or any other inte-
grated circuit for that matter.

Still yet, the architecture and/or functionality of the various
previous figures may be implemented in the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 700 may take the form of a desktop
computer, laptop computer, server, workstation, game con-
soles, embedded system, and/or any other type of logic. Still
yet, the system 700 may take the form of various other devices
including, but not limited to a personal digital assistant (PDA)
device, a mobile phone device, a television, etc.

Further, while not shown, the system 700 may be coupled
to a network (e.g., a telecommunications network, local area
network (LAN), wireless network, wide area network (WAN)
such as the Internet, peer-to-peer network, cable network, or
the like) for communication purposes.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of'a preferred embodiment should not be limited by any ofthe
above-described exemplary embodiments, hut should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A method, comprising:

generating shaded samples that are covered by a primitive
fragment at a first shading rate using a first sampling
mode;

storing the shaded samples in a target buffer that is associ-
ated with the first sampling mode and the first shading
rate, wherein the target buffer represents a first pixel
resolution;

receiving a second primitive fragment;

decreasing the first shading rate to produce a second shad-
ing rate;

determining a second sampling mode;

recasting the target buffer to represent a second pixel reso-
Iution based on the second sampling mode, wherein the
second pixel resolution is lower than the first pixel reso-
lution;
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generating additional shaded samples that are covered by
the second primitive fragment at the second shading
using the second sampling mode; and

storing the additional shaded samples in the target buffer.

2. The method of claim 1, further comprising accessing the
target buffer according to the second sampling mode.

3. The method of claim 2, further comprising displaying
the target buffer at a resolution corresponding to the second
sampling mode.

4. The method of claim 1, wherein the first sampling mode
is a multi-sample sampling mode and the second sampling
mode is a single sample per pixel.

5. The method of claim 1, wherein the first sampling mode
and the second sampling mode are different multi-sample
sampling modes that each include multiple samples per pixel.

6. The method of claim 1, wherein either the first shading
rate or the second shading rate is more than one pixel per
thread shader program execution.

7. The method of claim 1, further comprising inserting
additional instructions into a shader program, by a driver
kernel, to offset texture coordinate derivatives computed for
the additional shaded samples, wherein the texture coordinate
derivatives are offset for the second sampling mode relative to
the first sampling mode.

8. The method of claim 1, wherein the determining of the
second sampling mode comprises estimating color variability
in a group of pixels.

9. A method of shading, comprising:

receiving a primitive fragment that is associated with a first

sampling mode and a first shading rate;

determining that not all pixels in a pixel group comprising

at east two pixels are covered by the primitive fragment;
determining a second sampling mode for the primitive
fragment;
recasting a target buffer represented in a first pixel resolu-
tion corresponding to the first sampling mode to a sec-
ond pixel resolution corresponding the second sampling
mode, wherein the second pixel resolution is higher than
the first pixel resolution for the pixels in the pixel group;

generating, at a second shading rate, shaded samples cor-
responding to the primitive fragment using the second
sampling mode; and

storing the shaded samples in the target buffer.

10. The method of claim 9, wherein the second shading rate
is less than the first shading rate.

11. The method of claim 9, wherein the determining of the
second sampling mode comprises estimating color variability
in the at least two pixels.

12. The method of claim 9, wherein the first sampling mode
is a super-sample sampling mode configured to compute a
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shaded sample for each sample location of each pixel and the
second sampling mode is a multi-sample sampling mode
configured to compute a single shaded sample for each pixel.

13. The method of claim 9, further comprising inserting, by
a driver kernel, additional instructions into a shader program
to offset texture coordinates and derivative computations
when the target buffer is recast.

14. The method of claim 9, wherein the second pixel reso-
Iution is higher than the first resolution.

15. The method of claim 9, wherein either the first shading
rate or the second shading rate is more than one pixel per
thread shader program execution.

16. A system comprising:

a memory storing a target buffer represented in a first pixel

resolution corresponding to a first sampling mode; and
one or more processing cores coupled to the memory and
configured to:

receive a primitive fragment that is associated with the first

sampling mode and a first shading rate;

determine that not all pixels in a pixel group comprising at

least two pixels are covered by the primitive fragment;
determine a second sampling mode for the primitive frag-
ment;

recast the target bufter represented in a first pixel resolution

to a second pixel resolution corresponding to the second
sampling mode, wherein the second pixel resolution is
higher than the first pixel resolution for the pixels in the
pixel group;

generate, at a second shading rate, shaded samples corre-

sponding to the primitive fragment using the second
sampling mode; and

store the shaded samples in the target buffer.

17. The system of claim 16, wherein the second shading
rate is less than the first shading rate.

18. The system of claim 16, wherein the second sampling
mode is determined by estimating color variability in a group
of pixels.

19. The system of claim 16, wherein the first sampling
mode is a super-sample sampling mode configured to com-
pute a shaded sample for each sample location of each pixel
and the second sampling mode is a multi-sample sampling
mode configured to compute a single shaded sample for each
pixel.

20. The system of claim 16, further comprising a driver
kernel configured to insert additional instructions into a
shades program to offset texture coordinates and derivative
computations when the target buffer is recast.
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